Inorganic Specialty Chemicals

Chromate Reducers for the Mortar Industry

Topics

- The Chromate Issue and Legislation
- Reduction Technologies in Cements
- Long Term Cr(VI) reduction effect in Cement formulations
- Stannous Sulphate, its performance and stability
- Influence of Tin(II) based Cr(VI) Reducing Agents on Mortar properties
- Conclusion

The Issue....

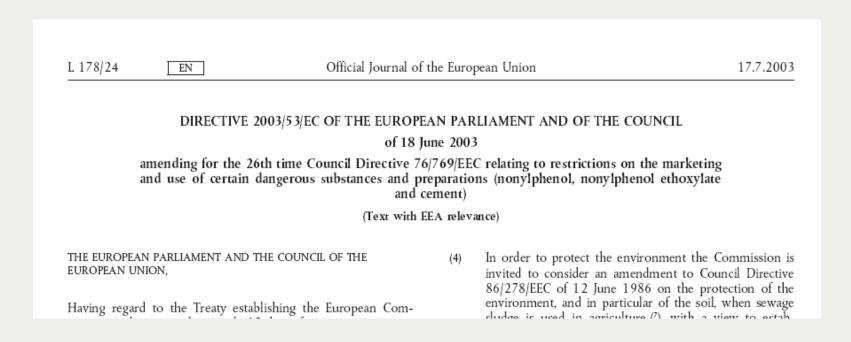
Cr(VI) in Cement:

- Raw materials
- Secondary fuels
- Oxidative conditions in the cement kiln

Total Chromium content in Cement: 50 – 200 ppm,

Soluble Chromium: 0 – 40 ppm

The Issue.....


- continuous contamination of the skin with cement
- natural barrier function of the skin is overpwhelmed
- the skins gets dry and cracked development of an irritational eczema
- the barrier function of the skin is permanently disturbed
- Chromate lons penetrate into deeper layers of the skin
- Sensibilisation by Chromate
- development of an allergic contact eczema

The consequence: European regulation

European Legislation:

17.7.2003	
-----------	--

Official Journal of t

(9) In order to protect human health, it therefore appears necessary to restrict the placing on the market and the use of cement. In particular, the placing on the market and the use of cement or cement preparations containing more than 2 ppm chromium VI should be restricted in the case of activities where there is a possibility of contact with the skin. In controlled closed and totally automated processes this is not the case, and they should therefore be exempted. Reducing agents should be used at the earliest possible stage, i.e. at the point of cement production.

EN

(6) Scientific studies have also shown that cement preparations containing chromium VI may cause allergic reactions in certain circumstances, if there is direct and prolonged contact with the human skin. All uses of cement bear the risk of direct and prolonged contact with the human skin, with the exception of controlled closed and totally automated processes.

The effect of Cr(VI) is proven,

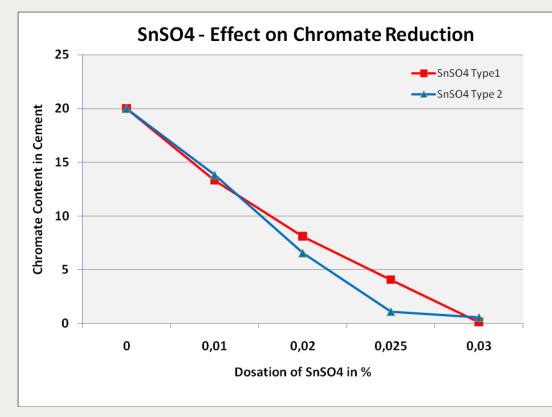
Reducing agents should be used !

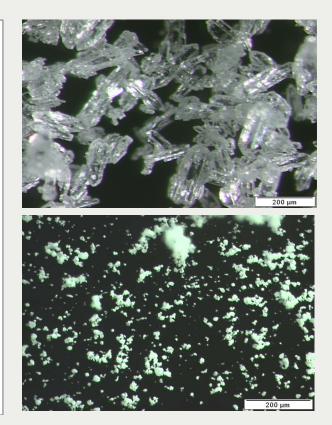
Reduction Technologies

Agent	FeSO4	SnSO4	Sb2O3	Na2Sx
State of aggregation	Solid	Solid, liquid, dispersion	Dispersion	liquid
Market Share	#1	#2	Small	Very small
Cost /kg	Cheapest	Most expensive	Expensive	cheap
Consumption per to Cement	Highest	Low	Low	high
Key argument	Efficient & cheap	Most efficient, and long term stable, small CAPEX	Efficient, small CAPEX	Cheap, small CAPEX
Key problem	Long term stability, handling	Price	Only dispersion, Toxicity	Only liquid, Long term stability
Toxicity	No	No	Suspected cancerogenic	Corrosive, danger of H2S development

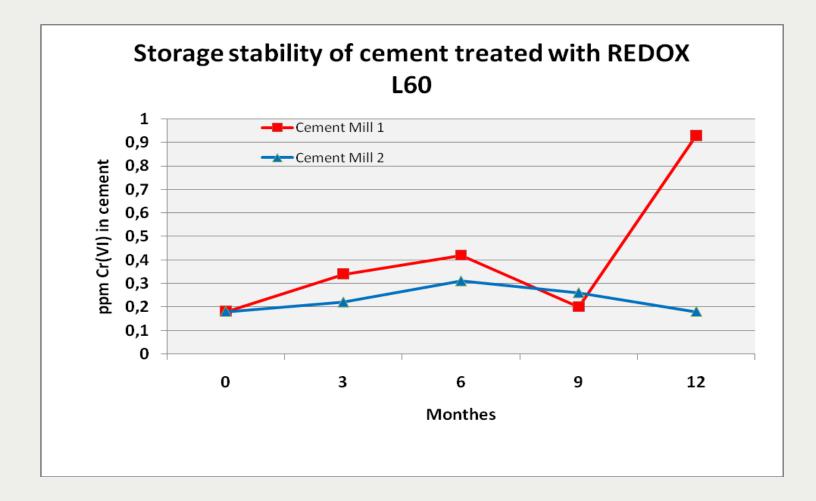
Addition of Chromate Reducing Agents

typically into the cement mill to enshure homogeneous distribution:





Feeding a liquid additive

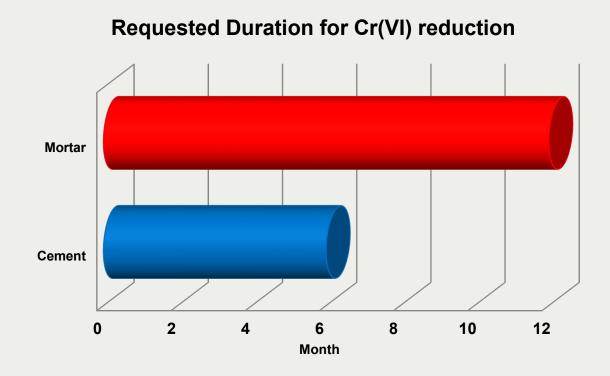


04.08.2020 / Seite 9

Consequences for the Dry Mix Industry

If Cement is already supplied with a chromate reducing agent incorporated,

why should the Dry Mix Industry worry?



Long Term stability of the reduction effect in cement

Agent	FeSO4	SnSO4	Sb2O3	Na2Sx
Dosation per 1 ppm Cr(VI)	500 gr/to (*)	60 gr/to	65 gr/to	300 gr/to
Cr(VI) Reduction Efficiency	Low	Very high	High	medium
Long Term Stability	3 – 6 month	6 - > 12 month	12 month	3 month

(*) calculated as FeSO4*7H20

Issues for the cement based formulations

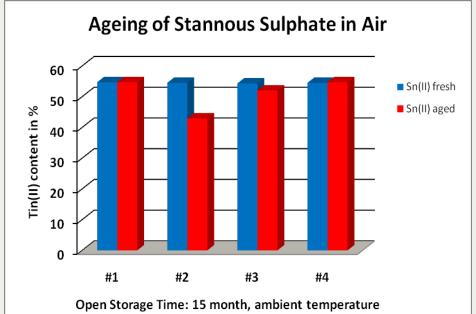
Dry Mix products need long duration of Cr(VI) reduction effect

Cements are delivered mostly with a max. stability between 3 and 6 month

Solution: treatment of Dry Mix products

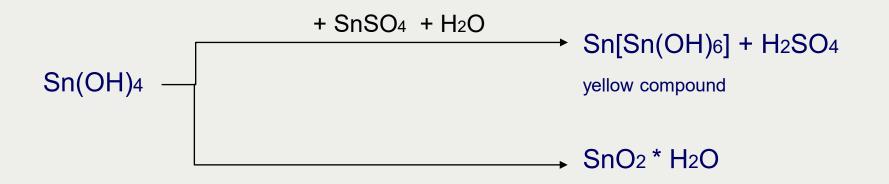
Properties	Reducing Agent for direct Feeding	Reducing Agent for Premix Process	
Product	Formulated	Pure SnSO4	
SnSO4 content	10 %	95 – 100 %	
Appearance	Grey free flowing powder	Crystalline	
Stability	Excellent	Quality depending	
Dosation for 10 ppm Cr(VI) in cement	1300 gr/to	130 gr/to	
Dosation in Dry Mix products	0.1 – 0.2 %	0.01 – 0.02 %	
Storage stability in Dry Mix products	> 12 month	12 month	

Influence on Chromate Reduction Efficiency

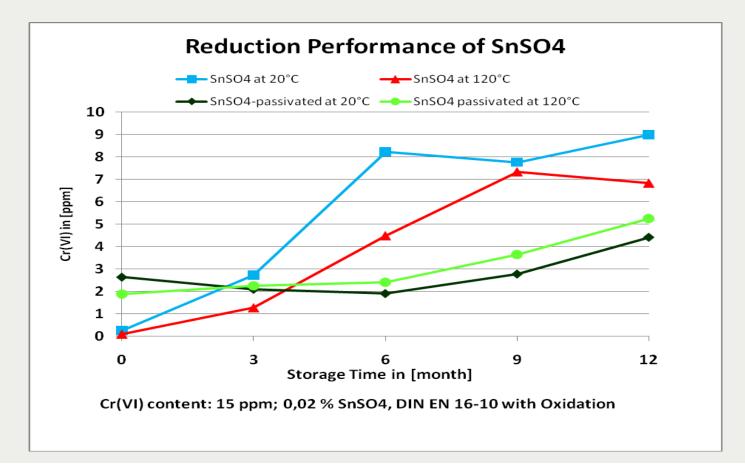

Efficiency of SnSO4 based Reducing Agent is depending on:

- Type and Quality of SnSO4
- Content of free Lime in cement and mortar
- Additives
- Raw materials

• Quality of Stannous Sulphate



SnSO₄ is stable, but quality has to be monitored, Yellow material is at the end of the shelf life


Ageing of Stannous Sulphate

- By Oxidation / moisture
 - $SnSO_4 + O_2 + H_2O \longrightarrow Sn(OH)_4$

• Quality and Type of Stannous Sulphate

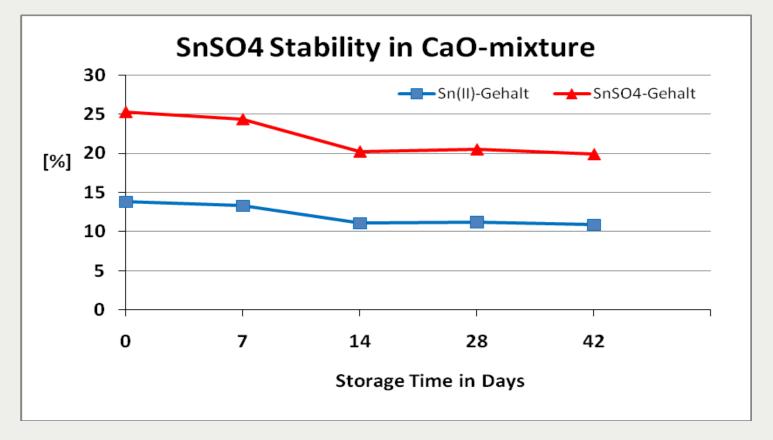
Quality of SnSO4 is key feature

for the long term performance !

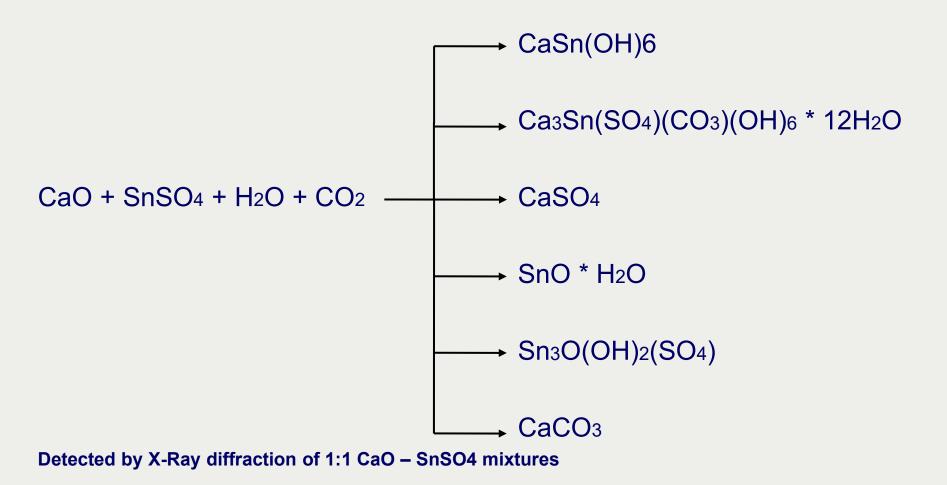
Treated SnSO4 offers improved

Reduction efficiency by

cutting activity losses through


Oxidation and Alkalinity.

Efficiency Improvement



• Effect of free lime in cement/ mortars on Stannous Sulphate

CaO triggered decomposition of SnSO4

Conclusion

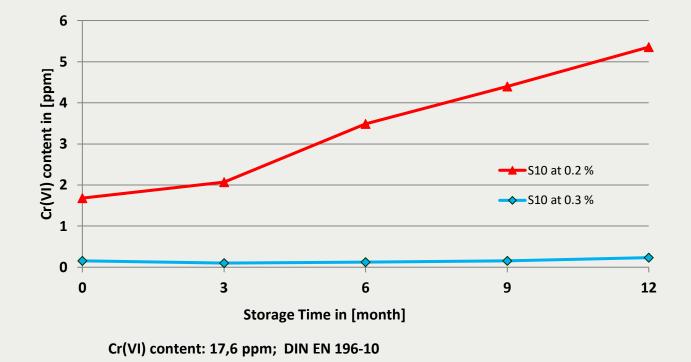
Long Term Reduction Ability of Stannous Sulphate is influenced by:

Ageing:

depending

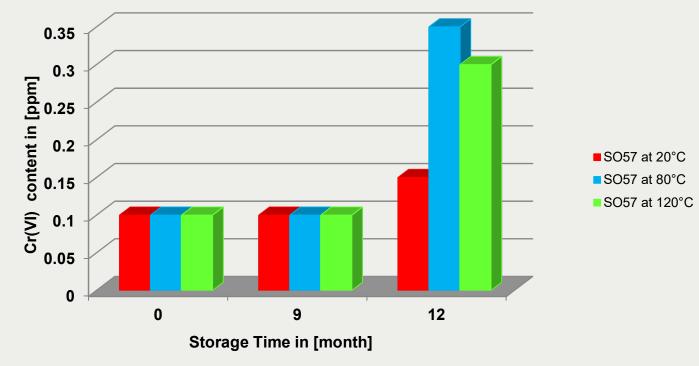
- on quality of SnSO4 and
- on oxidation / moisture

Decomposition:


depending

- on alkalinity, espec. on free Lime content
- on other ingredients

Solutions for improved performance


SnSO4 with inorganic stabilizer

Solutions for improved performance

New Tin(II) based Chromate Reducing Agent

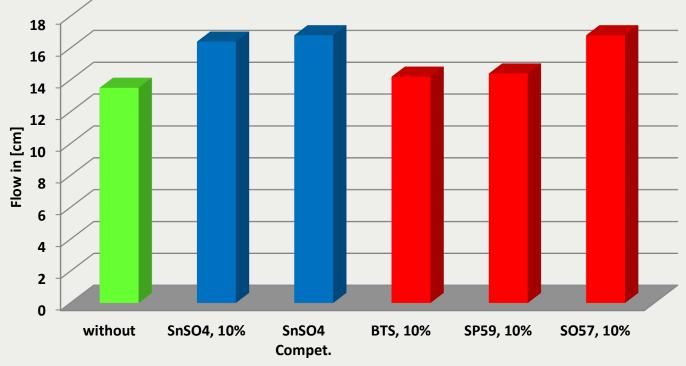
Cr(VI) = 17.8 ppm; 0,03 % Chromate Reducer, DIN EN 196-10

Influence of Chromate Reducing Agents on Mortar

• SnSO4 reducing agent can influence mortar properties like

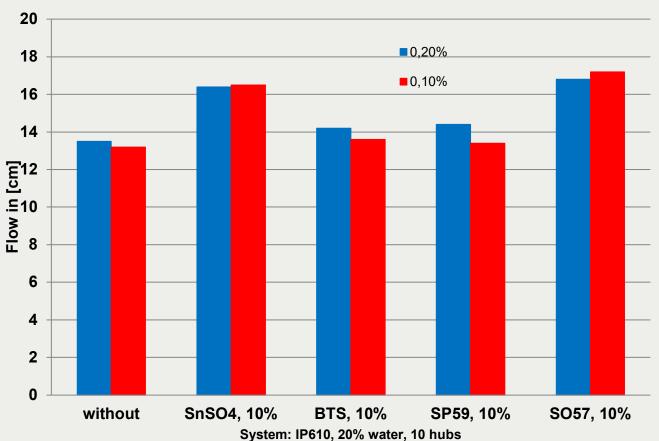
performance of methyl celluloses
and can lower
water retention
flow properties.

Reason: complex formation between SnSO4 and MC

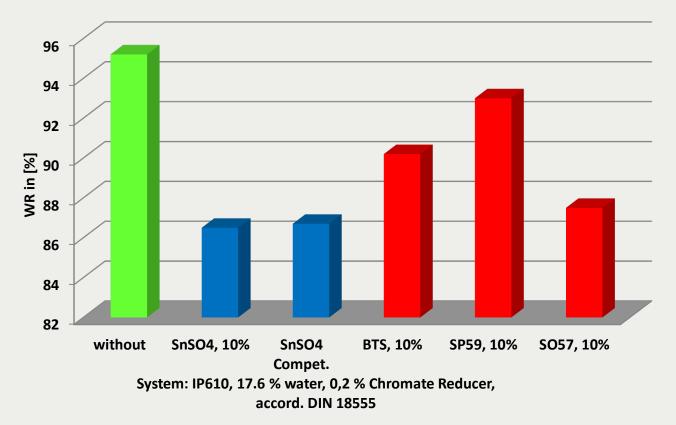

SnSO4 content	SnSO4 contentDiameterin mortarvert.		Diameter horiz.
No additive	0 ppm	13.5	13.2
0 % (only stabilizer)	0 ppm	13.1	12.9
5.5 %	110 ppm	16.2	15.1
7.4 %	148 ppm	16.9	14.8
10 %	200 ppm	16.5	16.1
80 %	1600 ppm	15.8	14.5

• System: IP 610 A, 10 hubs, 0.2 % Cr(VI)-Reducing Agent; 20.5 % water

Influence of Cr(VI) Reducing Agents



System: IP 610, 20 % water, 0.2 % Chromate Reducer, 10 hubs,


Influence of Cr(VI) Reducing Agents

Influence on Water Retention Properties

Water Retention Properties

Conclusion

- Stannous Sulphate offers Cr(VI) reduction efficiency for more than 12 month.
- Activity losses of SnSO4 can be reduced by improved manufacturing methods and addition of stabilizers.
- New Tin(II) based Chromate Reducing Agents have been developed which deliver improved performance
 - for Cr(VI) efficiency
 - Flow properties
 - Water Retention in mortars.

Thank you very much for your attention:

For any questions:

dieter.guhl@tib-chemicals.com

phone: + 49 621 8901 404

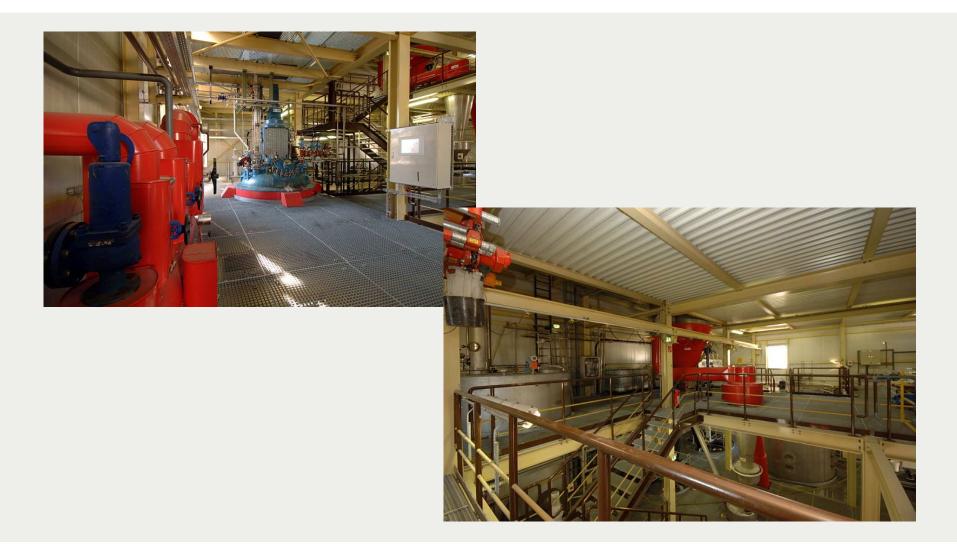
Product	Sn(II)-content [%]	5 ppm Cr(VI)-content	10 ppm Cr(VI)-content	20 ppm Cr(VI)-content
SnSO4 crystalline/powder	54.5	0.06 kg	0.13 kg	0.25 kg
SnSO4 solution	10.0	1,00 kg	not recommended	not recommended
REDOX BTS	70.0	0.046 kg	0.09 kg	0.18 kg
REDOX S10	5.4	0.6 kg	1.3 kg	2.6 kg
REDOX S80	43.6	0.08 kg	0.16 kg	0.32 kg
REDOX S95	53.0	0.065 kg	0.13 kg	0.26 kg
REDOX SO57	57.2	0.055 kg	0.11 kg	0.22 kg
REDOX SP59	59.0	0.055 kg	0.11 kg	0.22 kg
REDOX L60	32.0	0.15 kg	0.30 kg	0.60 kg
REDOX L32	18.0	0.3 kg	0.6 kg	not recommended

per 1 to of cement

TIB Chemicals: leading in tin chemistries

- Production of tin chemicals for more than 100 years
- Production of Stannous Sulphate for more than 30 years
- Two production sites:
 Mannheim, Germany
 - San Luis Potosi, Mexico
- Dedicated to high quality and innovative manufacturing processes
- ISO certified

SnSO4 powder / REDOX production plant in Mannheim


www.tib-chemicals.com

SnSO4 powder unit in Mannheim

TIB Chem Corp. Mexicana

